INESC TEC Science Bits #37 -Será possível mitigar o viés nos algoritmos de reconhecimento facial?
Science Bits é um podcast produzido pelo INESC TEC e Engenharia Rádio, que aborda as últimas tendências de ciência e tecnologia. Neste mês, vamos falar sobre a utilização de modelos de inteligência artificial para reconhecimento facial.
Em agosto de 2023, chegavam-nos notícias do outro lado do Atlântico que davam conta de que uma mulher de 32 anos, chamada Porcha Woodruff, havia sido erradamente detida, devido a um erro na tecnologia de reconhecimento facial da polícia de Detroit. Segundo a imprensa norte-americana tratava-se da sexta pessoa a ser detida de forma indevida por falhas nos modelos de inteligência artificial – todas pessoas negras. Certo é que vários estudos indicam que existe um problema de viés na utilização desta tecnologia. Um dos exemplos é o estudo “Gender Shades” de 2018, que avaliou três algoritmos de classificação de género, incluindo modelos desenvolvidos pela IBM e pela Microsoft. Os três algoritmos apresentaram um pior desempenho em mulheres com tom de pele escuro. Já em homens com tom de pele claro, o erro ficou abaixo de um por cento.
No início deste mês, a Europa alcançou um acordo para regular a Inteligência Artificial. Depois de uma maratona de negociações que durou mais de 30 horas, os colegisladores da União Europeia, Conselho e Parlamento Europeu convergiram para avançar com aquela que será a primeira lei do mundo a ditar as regras para a utilização de IA. A AI Act prevê, entre outras, a proibição de sistemas de categorização biométrica que utilizem caraterísticas sensíveis, nomeadamente “convicções políticas, religiosas, filosóficas, orientação sexual ou etnia”. A exceção vai para o recurso a sistemas de vigilância biométrica para identificação de vítimas ou em casos de crimes considerados graves, por exemplo.
Mas, porque se verifica este viés? Qual poderá ser a solução? É o que vamos descobrir na conversa com Pedro Neto, Investigador do INESC TEC.
Recentemente, o artigo “Compressed Models Decompress Race Biases: What Quantized ModelsForget for Fair Face Recognition” da autoria de Pedro Neto, Eduarda Caldeira, Jaime Cardoso e Ana Sequeira, investigadores do INESC TEC, foi distinguido na edição de 2023 da International Conference of the Biometrics Special Interest Group (BIOSIG). O trabalho de investigação conclui que a utilização de modelos de inteligência artificial comprimidos para reconhecimento facial pode resultar num viés racial. O estudo identifica também uma potencial estratégia para resposta a esta problemática, através do uso de dados sintéticos. Mais informação aqui.
Subscreve Apple Podcasts | Spotify | Youtube Music
You must be logged in to post a comment.